
Serving DNNs like Clockwork: Performance Predictability from the BottomUp

Arpan Gujarati∗ Reza Karimi∗
Max Planck Institute for Software Systems Emory University

Safya Alzayat Wei Hao
Max Planck Institute for Software Systems Max Planck Institute for Software Systems

Antoine Kaufmann Ymir Vigfusson
Max Planck Institute for Software Systems Emory University

JonathanMace
Max Planck Institute for Software Systems

Abstract
Machine learning inference is becoming a core building block
for interactive web applications. As a result, the underlying
model serving systems on which these applications depend
must consistently meet low latency targets. Existing model
serving architectures use well-known reactive techniques
to alleviate common-case sources of latency, but cannot
effectively curtail tail latency caused by unpredictable
execution times. Yet the underlying execution times are not
fundamentally unpredictable—on the contrary we observe
that inference using Deep Neural Network (DNN) models has
deterministic performance.

Here,startingwith thepredictable execution timesof individ-
ualDNN inferences,we adopt a principleddesignmethodology
to successively build a fully distributed model serving system
that achieves predictable end-to-end performance. We eval-
uate our implementation, Clockwork, using production trace
workloads, and show that Clockwork can support thousands
of models while simultaneously meeting 100ms latency tar-
gets for 99.9999% of requests. We further demonstrate that
Clockwork exploits predictable execution times to achieve
tight request-level service-level objectives (SLOs) as well as a
high degree of request-level performance isolation.

1 Introduction
With the proliferation of machine learning (ML), model
inferences are now not only commonplace but increasingly on
the critical path of web requests [29,71]. Inference requests are
handled by underlying model serving services [16, 26, 51, 58]
responsible for supporting scores of different pre-trainedML
models (including personalized models and experimental
A/B tests), ideally at low latency, high throughput, and low
cost. These are demanding goals to meet at scale—Facebook
alone serves over 200 trillion inference requests each day [48].
Furthermore, at least 100 companies are creating hardware
chips for accelerated ML inference [48], which underscores
the high stakes in this industry.

* Equal contribution

Yet significant software bottlenecks continue to hamper the
efficient utilization of hardware accelerators, such as GPUs,
for high-performance model serving. Consider an inference
request passing through a model serving system. The request
has an inherent deadline after which the answer ceases to
be useful to the end-user, and so the system should seek to
bound the latency of the request, or even provide service level
objectives (SLOs) for consistently achieving low tail latency.
The canonical approach for building such a low-latency system
is to reduce potential wait times for resources through over-
provisioning, since a larger pool of available resources makes
it more likely to find a resource on which a pending request can
be immediately scheduled. Increased resource provisioning,
however, comes at the expense of efficiency and utilization.

Existing systems fundamentally assume that the constituent
system components have unpredictable latency perfor-
mance [16,58]. Moreover, the best-effort techniques employed
to tolerate such variability, such as fair queuing, further cascade
the unpredictability to other system components and propagate
tail latency to higher layers.While some performance volatility
of a model serving system is due to external factors, such as a
bursty or skewedworkload,much variability in execution times
stems from design decisions internal to the service, ranging
from caching decisions over conditional branching behavior to
concurrency from other processes, the OS, and the hypervisor.
The challenge, then, is to tame the internal unpredictability.

In this paper, we present the design and implementation
of Clockwork, a distributed system for serving models with
predictable performance. With an explicit focus on the
ubiquitous deep neural network (DNNs) architectures we first
show that DNN inference is fundamentally a deterministic
sequence of mathematical operations that has a predictable
execution time on a GPU. To leverage this observation in
designing a responsive model serving system, our approach is
to preserve predictability wherever possible by consolidating
choice: eschewing reactive and best-effort mechanisms
and centralizing all resource consumption and scheduling
decisions. Clockwork will only execute an inference request
if it is confident that the request can meet its latency SLO. To

support such proactive scheduling, Clockwork is composed of
workers that each handle one or more GPUs, and a centralized
controller that schedules requests. Each Clockwork worker,
responsible for the exclusive model loading and inference
execution on the GPUs, achieves predictable performance. If a
worker cannot execute a particular schedule, because of exter-
nal factors, the request is immediately aborted and the worker
resumes execution of the next request at the specified time. The
Clockwork controller manages the resources of each worker
and maintains a minimal advance schedule for the worker’s
operations, including model placement and replication.
We have implemented Clockwork in C++ and evaluated it

using a wide range of DNNmodels on production workload
traces. In comparison to Clipper [16] and INFaaS [58], two
prior model serving systems, Clockwork more effectively
meets latency goals while providing comparable or better
goodput. Clockwork more effectively shares resources
between different models, and scales to thousands of models
per worker. For realistic workloads comprising unpredictable,
bursty, and cold-start clients, Clockwork consistently meets
low-latency response times of under 100ms.

The main contributions of this paper are as follows:
• We demonstrate that predictability is a fundamental

trait of DNN inference that can be exploited to build a
predictable model serving system.

• We propose a system design approach, consolidating
choice, to preserve predictable responsiveness in a
larger system comprised of components with predictable
performance.

• We present the design and implementation of Clockwork,
a distributed model serving system that mitigates tail
latency of DNN inference from the bottom up.

• We report from an experimental evaluation on Clockwork
to show that the system supports thousands of models
concurrently per GPU and substantially mitigates tail
latency, even while supporting tight latency SLOs.
Clockwork achieves close to ideal goodput even under
overload, with unpredictable and bursty workloads, and
with many contending users.

2 Background andMotivation
The state of machine learning. The meteoric rise of
applications driven by machine learning (ML), ranging
from computer vision [28, 78] to ad-targeting [3, 17] to
virtual assistants [13, 64], has prompted significant interest
into making both ML training and inference faster. These
efforts have targeted the underlying ML models, hardware
accelerators, and software infrastructure. Chief among the ML
modeling approaches are deep neural networks (DNNs),which
are composed of multiple layers of artificial neurons tuned
through non-linear convolution and pooling operations [25].

A plethora of specialized hardware are being developed and
deployed for ML training and inference [48], such as ASIC
and FPGA chips, Google’s TPUs [41], and Facebook’s Big

ML Applications

ML Data Sets
ML Models
ML Frameworks
Graph Formats
Graph Compilers
Optimized Libraries
Operating Systems
Hardware

ONNX NNEF

TVM nGraph Glow XLA

Linux Android Windows BSD/OS-X RTOS

CUDA MKL DNN OpenBLAS CuBLAS Eigen

ImageNet COCO VOC KITTI WMT

Tensor-Flow PyTorch Caffe MXNet CNTK Theano

ResNet GoogLeNet SqueezeNet MobileNet SSD GNMT

GPU CPU TPU NPU DSP FPGA Accelerators

Computer
Vision

Speech
Recognition

Language
Translation

Autonomous
Driving

Recommender
Systems

Fraud
Detection Advertising

Narrow Waist

Fig. 1: Model serving targets the narrow waist of the ML software
stack (adapted from Reddi et al. [48]). Clockwork targets the shaded
blocks on the left.

Basin [29] chips. The dominant machine learning hardware
in data centers, however, is the GPU, representing a third of
the global market in 2020 [5], and will be our focus here.
Interposed between the emerging DNN applications

and hardware accelerators, an ecosystem of ML software
frameworks is flourishing. Fig. 1 displays several prominent
projects in today’s ML software stack. Layered protocol
stacks in complex systems and competitive environments
tend to evolve into hourglass-shaped architectures [4]. We
are witnessing the ONNX and NNEF graph exchange formats
for DNNs [49,52] emerging as the “narrow waist” of the ML
stack, acting as an interface between high-level ML model
development and low-level software and hardware concerns.
Model serving. Operators increasingly deploy machine
learning on the critical path of nascent interactive applica-
tions [71]. This has elevated machine learning inference to
separate, managedmodel serving services [16,26,58]. From
the vantage point of an operator, the model serving users (cus-
tomers or internal applications) upload their pre-trained DNN
ahead of time (the natural format for which is ONNX/NNEF).
Their applications can then submit inference requests to an
API. The model serving back-end manages the users’ models
and the hardware accelerator resources, and provides timely
responses to inference requests. Upon receiving an inference
request, it loads the appropriate model into hardware if not
already loaded, runs the DNN on the input, and returns the
resulting output to the user.Model serving has similar concerns
to other datacenter services [2]: it multiplexes workloads of
different users concurrently and load balances requests across
multiple workers and GPU hardware accelerators.
Low-latency inference. Model serving users require a
timely response to their queries. Most cloud and data center
services have service-level objectives (SLOs) that codify the
performance that clients can expect from the service [40].
The most common type is a latency SLO, which specifies
the service’s acceptable request latencies, typically on the
order of milliseconds [14, 32, 41]. For example, a latency SLO
might specify a 10ms average response time, or a 40ms 99th
percentile response time, or both. If a service fails to meet its
SLOs – for example, by being too slow for too many requests
– the service provider may risk a penalty.

Model serving further operates under hard cost constraints.
SpecializedML hardware is necessary to achieve interactive

latencies [41], but it is comparatively expensive to procure and
operate, and must thus be used efficiently [60, 65]. Existing
model serving systems achieve efficient inferences for specific
heavily usedmodels by dedicating them entire GPUs and using
copious batching [41]. However, many use cases cannot justify
dedicated hardware resources: applications with insufficient
request volume; specialization (e.g. location-specific search or
language-to-language translation); and experimentation (e.g.
retrained models and A/B testing) [63]. Efficiently serving
models with low request rates requires a large number of
models to share accelerators; no existingmodel serving system
supports this.
While it is already difficult for model serving operators

to meet latency SLOs under these constraints, the bigger
challenge lies in minimizing tail latency, the insidious bane
of interactive performance. Numerous sources of latency
variability in complex individual [46] and distributed [18, 56]
systems have been identified and studied, including out-of-
order scheduling, interference from concurrency, power saving
modes, and network queuing delays.
The crux of tail latency lies in performance variability

of both the constituent system/network components and the
encompassing architecture. To tame it, the system designer
can either seek to (quoting Dean and Barrosso [18]) “create
a predictably responsive whole out of less-predictable parts”,
or to expend significant effort to systematically unshroud
and mitigate the performance variability of these underlying
components. To meet tight tail-latency SLOs under resource
constraints, the latter approach is necessary.
Observation:DNN inference is predictable. Weobserve
that DNN executions exhibit negligible latency variability,
a result both intuitive in concept—DNN inferences involve
no conditional branches — and demonstrable in practice.
Although we describe our observations in the context of GPU
execution, they extend to other accelerators such as TPUs, and
also to CPU execution where appropriate.
Conceptually, a DNN inference is a fully deterministic ex-

ecution. Each DNN inference request carries a fixed-size input
tensor argument; in practical terms this is a statically-sized
array of bytes. A worker receives this input over the network
into main memory. To execute on a GPU, the input is copied
frommain memory to GPUmemory over the PCIe intercon-
nect. The DNN is then executed on the GPU. Abstractly, a
DNN is a pre-defined sequence of tensor multiplications and
activation functions. Concretely, the DNN code applies these
operations to the input tensor one-at-a-time to transform the
input into an output. DNN code lacks conditional branching;
input choices such as batching size and RNN sequence length
are specified ahead of time as parameters. The output is also
a statically-sized array of bytes, and it is copied from GPU
memory back to main memory over the PCIe interconnect.
We compiled ResNet50v2 [78] with TVM 0.7 [15] and

executed 11million inferences in isolation on a state-of-the-art

0
90
99

99.9
99.99

99.999

2.895 2.900Latency (ms)

Per
cen

tile

(a) CDF of 1-thread latency

0

100

200

300

400

500

1 2 4 8 16
Concurrency

Th
rou

gh
pu

t(r
/s)

1

10

100

1 2 4 8 16
Concurrency

La
ten

cy
(m

s)

(b) Inference throughput and latency.
Whiskers showmin and max.

Fig. 2: Inference is predictable in isolation (left). Running
inferences concurrently gains up to 25% throughput (middle), at
a cost of substantially increased latency variability (right) due to
interleaved GPU and OS executions.

NVIDIA Tesla v100 GPU using random inputs and batch size
1. Wemeasured the latencies of each inference and show the
median and high-percentile latencies in Fig. 2a. The 99.99th
percentile latency was within 0.03% of the median latency.

IfDNNexecution times can bemeasured and then accurately
predicted for future inferences on that model, the next question
is whether a distributed model serving system can preserve
the predictable responsiveness of the core inference execution.
3 Predictable Performance
To build a responsive system through principled design, we
further study the factors that can cause or amplify performance
variability. Importantly, components at any level of themodern
system stack can contribute to variable request latency,whether
at the application layer, in the operating system, or even in the
hardware [46]. Network effects and workload fluctuations add
two more sources of unpredictability to distributed systems.
The whole is more than the sum of its parts. The overall
system performance variability is primarily governed by how
the system is assembled from its constituent components. We
can handle variable latency of a software component in several
ways. First, we can ignore the problem and allow the volatility
to propagate to later requests or percolate to other components
of the system. Even performance-conscious code that is
optimized to improve throughput or average latency does not
fix tail latency [19]. An example of this contagiousness of
unpredictability, known as the “straggler” problem in data
analytics frameworks [7, 56], is when a worker executes a re-
quest that takes unusually long and the other requests that were
enqueued on the worker in the meantime then incur the extra
delay from the unexpected wait-time. Ignoring the variability
can further compound the problem across the system, such
as when the request handler itself has variable latency [69].
Second, we can mitigate the volatility by ensuring all

requests match the worst-case latency, thus exchanging lower
resourceutilization forpredictability—often a steeppricewhen
worst-case latency is significantly higher than the median.

Third, we can minimize variability by expending more
resources, again in trade for lower utilization. Some networked
systems,for instance,aredesignedtosubmit the same jobtomul-

tiple workers in parallel and then to cancel unneeded jobs upon
successfully receiving a result from the fastest worker [18].
Fourth, upon detecting an unusual delay, we can notify a

feedback mechanism to adjust the environment to lower the
impact on future requests. Such “best-effort” methods are
typically reactive and aimed at longer-term effects, such as
by temporarily adding more resources (auto-scaling [23]),
throttling requests, or balancing load.
Consolidating choice. We take a fundamentally different
approach: designing a predictable system from the bottom
up. Our strategy is to restrict the choices available to lower
system layers as much as possible—a philosophy based on our
observation thatwhen executing an essentially predictable task,
performance variability only arose when a lower layer in the
systemwas given choices regarding how to execute its task. Ex-
amples from all layers of the systems stack abound, including:

• Hardware level:when a GPU is passed multiple CUDA
kernels to execute in parallel, the GPU has the choice
of how to allocate resources, including execution units
and memory bandwidth, between kernels. The GPU
makes these choices based on its internal state and
undocumented, proprietary policies.

• OS level: when we create multiple threads that the
operating system can execute on the same core, the OS
has the choice of what threads to execute when, based
on internal scheduling policies and state.

• Application level: when the worker processes of a
distributed application each manage their own cache
independently, the workers have the choice of what to
cache and for how long, leading to unpredictable hit
rates and latency variability [38]; similarly, when worker
processes implement their own thread pools and queuing
policies, they have the choice ofwhich requests to execute
first, leading to unpredictable queuing times.

Fig. 2b illustrates this: a standard design for building a worker
would use thread pools serving inference requests in parallel
to saturate the GPU.While concurrent threads indeed increase
inference throughput by up to 25%, the factors above cause
tail latency to increase by 100×.
Our approach is to consolidate choices in the upper layers:

once a layer implements choices for lower layers based on inter-
nal state, it forces the lower layer to follow a narrow path of pos-
sible executions, causing the performance of the resulting layer
to be nearly deterministic. The upper layer can then sufficiently
predict the performanceof the lower layers and reasonwith fore-
sight about resource utilization and the anticipated execution
times for all requests. The price of this strategy, however, is a
tighter coupling of components and a lessmodular architecture.
Imperfect predictability. Notably, we can consolidate
choice without requiring perfect predictability. Real systems
will retain some unpredictable components, such as managing
CPU caches or workload shifts, even after consolidating
choices in its upper layers. Instead, the chief goal of concentrat-

ControllerUsers
À Á

Worker
RAM

GPU Mem
GPU Exec

Â

Ã

Workers

C
lie

nt
AP

I

Fig. 3: Clockwork comprises multiple Workers and a centralized
Controller. Models () reside on Workers; inference requests are
queued and scheduled centrally on Clockwork’s Controller. See §4.1
for a detailed description.

ing these choices is tomakepredictable executions the common
case. This frees us from implementing best-effort mechanisms
to tolerate the occasional, rare instance of unpredictability;
instead unpredictability can be directly treated as an error.
4 Design
By recursively restricting choice from lower layers, we
converge on a design where the most performance-critical
execution choices are made in the topmost layer. In the context
of a model serving service, this process converges to an
architecture, which we call Clockwork, with a centralized
controller and workers with predictable performance.
4.1 Overview
Architecture. Fig. 3 illustrates Clockwork’s architecture.
Users submit inference requests (À)which are queued centrally
on Clockwork’s controller. Each worker has a set of DNN
models () loaded into RAMandmaintains exclusive control
over one or more GPUs. The centralized scheduler has a global
view of system state, including all workers, and decides when
to execute each request (Á). To execute a request, the scheduler
explicitly decides when to load models into GPUmemory (Â)
and when to execute requests on the GPU (Ã). At any time, the
scheduler makes accurate, high-quality caching, scheduling,
and load balancing decisions. The controller can perform these
actions proactively because execution on workers is highly
predictable. The controller transmits continual scheduling
information to the workers that, by design, will execute
schedules exactly as directed.
Illustrative example. To elucidate the Clockwork archi-
tectural components with more detail, including the choices
that were consigned to the controller, consider the key steps
for serving the inference requests illustrated in Fig. 4.

À Upon receiving an inference request r1 for model , the
controller is aware that a target worker has yet to copy the
model weights from RAM into GPUmemory. It estimates the
time required to load the model weights (LOAD), plus the time
to subsequently execute the inference (INFER), and concludes
that the request will complete within its specified SLO. The
controller instructs the worker to copy the model weights to

Controller

Queue
LOAD
INFER

r1

r1

À request for model arrives
r1 deadline

Controller
Worker

Queue
LOAD
INFER

LOAD

r1
r2

r1
r2

Á request for model arrives

Controller
Worker

Queue
LOAD
INFER

LOAD
INFER

r1
r3

r1
r1r3

r2

Â request for model arrives

r1 deadline

Controller
Worker

Queue
LOADINFER
LOAD
INFER

r4

r4

r2 r1r3

Ã request for model arrives

r4 deadline

Fig. 4: Timeline of four illustrative inference requests.

GPUmemory via a LOAD action. Since the controller is aware
of all timings, it does not yet need to submit the subsequent
INFER action until the LOAD has completed.

Á While is loading, a request r2 for model arrives. The
controller is aware that, unlike , is already loaded into
GPU memory. The controller can choose to either INFER r2immediately, or wait for to complete loading then INFER
r1. Since the worker would be otherwise idle, the controllerinstructs the worker to execute the inference for r2 immediately
via an INFER action.

Â Clockwork workers only execute one INFER action and
one LOAD action at a time, so the controller can wait until r2has nearly completed before submitting an INFER action for
r1. In the meantime, another request r3 for model arrives.
This gives the controller a choice between INFER for r1 byitself, or to batch r1 and r3. Batched execution is more efficient,
but takes longer. In this case a batched INFER action will still
complete before r1’s deadline, so the controller instructs theworker to batch the inferences for r1 and r3.

Ã While r1 and r3 execute, a request r4 for arrives with a
tight SLO. The controller is aware that r4 will miss its deadline,
even if it executes immediately after the worker becomes free.
The controller does not proceed to schedule an INFER action,
and cancels the request before performing any fruitless work.
Each step of the above execution is fast, e.g. for ResNet50,

LOAD and INFER take approximately 8ms and 3ms respec-
tively. Table 1 outlines representative measurements for 8 of
the 61 models used for Clockwork experiments.

4.2 Consolidating Choice
Our design consolidates choice in three main ways. First,
changes in the worker’s state, for instance evicting a DNN
fromGPUmemory, can influence the performance for future
requests in a way that makes performance estimation complex.
We therefore require that no worker operation should have im-
plicit performance side-effects on any future operation. Second,
we must ensure that a predictable component either delegates
scheduling decisions that may impact performance to the cen-
tralized controller, or otherwisemakes schedules deterministic.
Third, when a predictable component is unable to execute a
schedule as instructed, it is treated as an error to enable workers
to get back on schedule. Workers do not attempt best-effort
remediation, so as to avoid a cascade of mispredictions.
We enforce these three properties in Clockwork through

an action command abstraction between the controller
and workers that, in lieu of traditional RPC calls, either
communicates a change in a worker’s state or a task for a
worker to execute. Each action the controller issues to a worker,
such as LOAD and INFER, has predicted execution time and
a designated execution window. These are derived using the
known state of the worker, previously submitted actions, and
known transitions in controller-maintained worker state.
4.3 Challenges for Predictable Inference
Toconsolidate choicewemustfirst identifywhereperformance-
critical choices arise in system components. We have estab-
lished that DNN inference itself on a GPU has deterministic
performance; we next study the challenges in extending this
result to a full-fledged inference system.
Managed memory and caches can be unpredictable (C1).
RAM and GPU memory on a worker constitute state that
impacts the performance of future requests. Additionally,
some memory allocators exhibit variable timing for allocation
and deallocation requests due to internal trade-offs between
memory fragmentation and amortized performance. Memory
that is used as a cache specifically introduces performance
variability between cache hits and misses, with an internal
cache replacement policy influencing performance of future
items. To maintain predictability, we must instead consolidate
choice by managing cache admission and eviction for each
worker at the central controller. Fortunately, caching of DNN
weights is coarse-grained and per-model.
Hardware interactions can be unpredictable (C2).
Many system resources are implicitly administered by
hardware schedulers that operate at very fine time-scales and
produce different schedules under even minute shifts in the
arrival times of other requests. The volatility of timing coupled
with proprietary and un-documented scheduling policies make
it onerous to accurately predict completion times for concurrent
requests. The remedy for non-determinism is to strip away
the ability for schedulers to reorder requests by forcing only
a single request to be executed at a time, at the cost of spending

Model Family Model IO Size (kB) Weights GPU Execution Latency (ms)
Input Output Size (MB) Transfer (ms) B1 B2 B4 B8 B16

DenseNet [36] densenet169 602 4 56.5 4.50 5.18 6.29 8.57 12.82 21.85
Inception v3 [68] inceptionv3 1073 4 95.3 7.77 4.46 6.85 10.99 16.45 26.17
Mobile Pose [72] mobile_pose_mobilenetv3 590 209 19.0 1.55 1.29 1.92 3.13 5.71 11.62

ResNet [30]
resnet18 602 4 46.7 3.81 1.27 1.86 2.73 4.06 7.02
resnet50 602 4 102.3 8.33 2.61 3.78 5.61 9.13 15.67
resnet152 602 4 240.9 19.58 7.71 11.14 16.21 26.48 44.60

Table 1: Measurements of a representative subset of the 61 models used for Clockwork experiments. Pre-trained models were sourced from
the ONNXModel Zoo [53] and the GluonCVModel Zoo [28], and optimized for NVIDIA Tesla v100 GPUs using TVM v0.7 [15].

greater effort on keeping the resource fully utilized.Mercifully,
one-at-a-time execution of DNN inferences on GPUs has
closely comparable throughput to concurrent execution
(Fig. 2b) and many classes of DNNs (e.g. convolutional neural
networks) can saturate GPUs with small batch sizes.
External factors can trigger performance variance (C3).
Even after systematically removing the key internal sources
of unpredictability by consolidating choice, there will always
remain external sources outside of the controller’s purview.
These include performance interference through shared
network bottlenecks, thermal throttling of CPUs and GPUs,
and others. The only option is to minimize their effects by
building sufficient tolerance into the system.
4.4 Predictable DNNWorker
At a high-level,ClockworkworkersmaintainDNNs inmemory
and execute inference requests on one or more GPUs. The
workers interface with the controller to receive actions.
Memorymanagement. Model weights must be present in
GPUmemory to execute an inference. However, GPUmemory
capacity is small (≤32GB) relative to host memory (≤4TB),
and host-to-GPU memory transfers (≈8.3ms for ResNet50)
typically take longer than running the DNN inference on the
GPU (≈2.9ms). Consequently, Clockwork treats GPUmemory
as a cache, letting commonly or recently used models avoid
expensive loads. To overcomeC1, workers explicitly expose
LOAD and UNLOAD actions to the controller for copying
models to and removing models from worker’s GPUmemory
with deterministic latency. These actions also update the state
that the controller tracks for the worker.
Inference execution. The controller only sends an INFER
action when a model is present in GPUmemory or a LOAD ac-
tion will momentarily complete. The worker internally divides
INFER actions into three steps. First, INPUT transfers the input
vector from host to GPU memory. Next, EXEC performs the
actual heavy-weight DNNGPU calculations, which dominate
the total inference time. Finally,OUTPUT transfers the resulting
output vector from the GPU back to host memory. These steps
may coincide: the previous request’s outputs can be copied at
the same time as the current request’s input is being transferred.
However, multiple concurrent EXEC calls cause the GPU
hardware scheduler to behave unpredictably (C2). Fortunately,

a DNN inference call by itself can efficiently utilize the GPU
while also restricting the hardware scheduler to a single,
predictable option (Fig. 2b). Clockwork workers therefore
run a single EXEC at a time, a design choice that reduces
performance variability by two orders of magnitude while
only minimally decreasing inference throughput (Fig. 2b).
Interfacewith the controller. Clockworkworkers receive
LOAD, UNLOAD, and INFER actions from the controller with
detailed timing expectations attached:
type INFER, LOAD, or UNLOAD
earliest the time when this action may begin executing
latest when this action will be rejected
Rather than executing actions in a work-conserving, best-

effort manner, workers strictly follow the schedule of actions
imposed by the controller. The controller communicates
two timestamps with every action, earliest and latest,
to designate a time interval during which the worker may
begin executing the action. Actions that cannot start within
the prescribed window are cancelled and never executed.
This allows workers to quickly get back on schedule after an
individual action is delayed unexpectedly (C3) by skipping
one or more actions, minimizing the impact of the delay on
other actions. Workers communicate the result of each action
back to the controller, including whether the command was
successful and the measured execution time.
4.5 Central Controller
All decision-making in Clockwork occurs in the central
controller. The controller receives inference requests from
users and decides worker actions while striving to meet SLOs.

Modelingworkerperformance. Thecontrollermaintains a
per-worker,per-modelperformanceprofilecomprisingprocess-
ing time measurements of recent requests; profiles are updated
continuously to tolerate shifts due to external factors (C3). The
controller also tracks the outstanding actions andmemory state
at every worker. Since actions have inherently deterministic la-
tency by design, the controller can deduce the earliest time that
a worker could begin executing a new action (queuing time).

Action scheduler. The Clockwork controller proactively
manages action schedules for workers. It utilizes a global view

of system requests, up-to-date worker performance profiles,
and accurate predictions for when outstanding actions will
complete. The controller attempts to pack worker schedules
tightly by making narrow, realistic estimates for the earliest
and latest time interval. The interval width balances a trade-
off between Clockwork SLO fulfillment and system goodput.
On one hand, making the interval too narrow increases the risk
of an action not being executed by a worker because it could
not be completed in time (C3), potentially triggering an SLO
violation. On the other hand, underestimating the window
length can create periods of inactivity and decrease worker
utilization, thus affecting Clockwork goodput.
The scheduler lazily decides which worker should execute

the inference. The controller only submits a minimal amount
of work to keep workers utilized; it is in no hurry to commit
because it can accurately predict action timings. Delaying
choices on the controller improves schedules by providing
more options, permitting the Clockwork controller to re-order
and batch inference requests to the same model, significantly
improving resource efficiency and throughput.
In our design, any worker can process any request since

they all store every model in host memory; however, workers
have different sets of models loaded into their GPUmemory.
A worker that executes only cold inferences must transfer
weights for each model from host memory to the GPU and
may saturate the available PCIe bandwidth, whereas a worker
that executes only hot inferences may be bottlenecked by the
GPU. The Clockwork scheduler balances load by mixing and
matching hot and cold inferences among all workers.
5 Implementation
Clockwork’s implementation, comprising 26KLOC of
C++, contains various decisions that enable Clockwork to
consolidate choice on its controller.
5.1 Models

Predictable model execution. Prior model serving sys-
tems such as Clipper [16] and INFaaS [58] act as orchestration
layers atop existing model execution frameworks such as
TensorFlow [1] and TensorRT [50]. This decoupling makes
it difficult to consolidate choice, since the model execution
frameworks encapsulate scheduling and memory management
decisions that we wish to make with Clockwork. Instead,
Clockwork implements its own model runtime, reusing key
components of the TVM optimizing compiler [15]. Clock-
work’s model runtime enables fine-grained control over each
stageofamodel’s execution. FormodelsprovidedtoClockwork
(e.g. inONNX form),we compile a binary representation using
TVM and postprocess the model to produce the following:

• Weights: A model’s weights are a binary blob (10s to
100s of MB (cf. Table 1).

• Kernels:The CUDA kernels that execute a model (10s to
100s of kB). These are not provided by the user; they are
derived from the abstract model definition, and kernels

from different users can safely execute within the same
process. Clockwork uses the kernels compiled by TVM.
Clockwork compiles kernels for multiple configurable
batchsizes; bydefault1,2,4,8,and16.Kernels fordifferent
batch sizes can use the sameweightswithoutmodification.

• Memorymetadata:At runtime, models do not directly
allocate memory; instead, Clockwork will pre-allocate
and manage all GPUmemory and pass pointers as argu-
ments to function calls. The memory requirements for a
modelare static,andClockworkprecalculates the required
workspace memory and offsets required for each kernel.

• Profiling data:Clockwork runs a brief profiling step to
produce a seed estimate for model execution times.

Model loading. Models are stored in an efficient serialized
form on disk. Clockwork workers pre-load models from
disk into main memory on worker startup. For the worker
machines used in our evaluation, 768GB RAM can support
thousands of models (cf. §6.5). Once a model is in main
memory, Clockwork extracts and links the CUDA modules
needed for its execution. To improve predictability, Clockwork
disables JIT compilation and the caching of CUDA kernels.
5.2 DNNWorkers
Each machine runs one worker process that receives and
executes actions from Clockwork’s controller. We do not run
Clockwork in a container or VM to avoid the performance
interference such sharing can impose.
Managing model weights in memory. Clockwork pre-
allocates all GPUmemory and divides it into three categories:

• Workspace: Models require a variable amount of
GPU memory for intermediate results. This memory
is transient and only needed during execution; once
an output has been produced, it is no longer needed.
Clockwork only executes models one-at-a-time, so it
allocates 512MBworkspace memory.

• IOCache: Although Clockwork only executes models
one-at-a-time, Clockwork asynchronously copies inputs
to theGPUprior to execution, and outputs to hostmemory
after execution. Clockwork allocates 512MB device
memory for temporary storage of inputs and outputs
before and after execution.

• PageCache: The remaining device memory is used
for storing model weights, divided into 16MB pages.
Multiple tensors can occupy the same 16MB page and
the mapping of tensors to pages is determined statically
at model-compile time. At runtime, page pointers are
passed as kernel arguments and tensors are read from
pre-defined offsets.

Clockwork’s PageCache has several advantages. First,
avoiding repeated memory allocation calls leads to more
predictable executions, since memory allocation can be an
unpredictable source of overheads (C1). Second, paging
simplifies choice: external memory fragmentation issues are

eliminated, and the controller need only track the number of to-
tal free pages to completely capture the worker’s memory state.
Paging slightly increases memory utilization; however, model
memory requirements are static and known ahead of time, and
can be bucketed on to pages to reduce internal fragmentation.
Paging does not affect the latency of memory transfers.
Actions. To orchestrate workers, the controller uses the pre-
viously described action abstraction. Actions contain a unique
id and an action-dependent payload (e.g. INFER inputs).
Eachworker runs a dedicated executor for each action type and
each worker-GPU. An executor runs a thread that dequeues
actions chronologically by earliest timestamp, and waits
until earliest is reached before proceeding with an action.
Executors reject actions whose latest timestamp has passed.
To reduce interference between threads and other processes,
each executor is pinned to a dedicated core and runs at real-time
priority. Both INFER and LOAD execute asynchronous work
in their own CUDA streams. Each executor is bottlenecked by
a different resource (e.g.GPU execution and PCIe transfers)
and can run concurrently with negligible interference.
Results. A network thread maintains a persistent con-
nection with the controller for receiving actions and sending
results. A result comprises the following:
status success or an error code
timing start and end times, and on-device execution

duration for any asynchronous work
LOAD actions acquire pages from the PageCache, then copy

weights to those pages. If no pages are available then LOAD
aborts. The controller explicitly frees pages with UNLOAD;
this only updates in-memory metadata and always succeeds.

INFER actions comprise INPUT, EXEC and OUTPUT, each of
which have dedicated executors. INPUT executes immediately
on receipt of INFER; it acquires IO memory from the IOCache
then copies inputs. EXEC inherits the INFER action’s earliest
and latest timestamps; it checks weights and inputs are
present then executes kernels on the GPU, usingWorkspace
for intermediate calculations. OUTPUT immediately copies
outputs back to main memory then releases the IO memory.
To simplify controller decision making, INPUT and OUTPUT
are not exposed as actions since they are orders of magnitude
faster than EXEC and LOAD (10s of microseconds) for our
workloads. Clockwork’s memory management allows for
back-to-back INFER actions for the same model.
5.3 Central Controller
On startup, Clockwork’s controller establishes persistent
connections to all workers and exchanges metadata about
the size of each worker’s PageCache, the models present on
each worker, and their initial pre-profiled execution times. The
core duty of the controller is to satisfy requests received from
clients by submitting actions to workers. This decision making
is encapsulated in the Scheduler interface:

onRequest client request received, specifying a model
ID, SLO, and providing inference inputs

onResult a result is received from a worker
A scheduler implements this interface, and can invoke

sendAction to send an action to aworker, and sendResponse
to respond to a client. A separate layer of the controller imple-
ments common tasks such as networking, forwarding inputs
to workers, setting timestamps, and handling timeouts. This
design concentrates all choice in a single place, and enables
different scheduler implementations to be easily dropped in.
Managing worker state. The controller maintains an
accurate representation of workers’ execution state, which is
threefold: memory state, in which the scheduler tracks what
models are present in the worker PageCaches and when LOAD
will be required; action profiles, which are measurements
of past 10 actions duration, stratified by model, worker, and
batch size, to predict the duration of future action; and pending
actions, which tracks submitted actions and estimates when
each executor will next be available. Taken together, these
enable the scheduler to accurately predict when candidate
actions will complete, and avoid submitting work that cannot
complete before the request’s deadline. Worker state is not a
significant scalability bottleneck; action profiles require only
40 bytes for each model, worker and batch size combination.
Scheduling INFER. Upon arrival, requests are enqueued
into per-model request queues. For each INFER executor, a
new action must be scheduled whenever the executor has less
than 5ms of outstanding work. To schedule an INFER action,
a model and batch size must be selected. The batch size can
differ action-to-action, though the scheduler prioritizes larger
batch sizes for efficiency.

At any point in time, a model will have zero or more queued
requests. However, not every request is suitable for every batch
size. Higher batch sizes take longer to execute, so a request
close to its deadline might only be satisfiable using a small
batch size. To handle this, each model has a request queue
per batch size (we term this a batch queue). New requests are
enqueued into every batch queue. Requests are dropped from
batch queues when they cease to be satisfiable; e.g. a request
in the batch size of 16 queue will be dropped sooner than it
is dropped from the batch size of 8 queue.
To decide which model and batch size to schedule, we use

strategies. A strategy specifies a model, a latest timestamp,
and a batch size. Each INFER executor has a separate strategy
queue, ordered by latest, containing only strategies for models
it has loaded. The scheduler dequeues strategies until it finds
one that is valid: latest has not elapsed, and the batch queue for
the specified batch size has sufficient requests. If a strategy is
valid, the scheduler will also speculatively increase the batch
size as long as extra requests are available.
When a valid strategy is found, an INFER action is created

and requests are dequeued to fill the batch. Old strategies for
this model are removed from the strategy queue, and new

0

200

400

600

800

1000

10 25 50 100 250 500

Go
od

pu
t(r

/s)

ClockworkINFaaSClipper

0909999.999.9999.99999.9999

1000 500

Pe
rce

nti
le

Clipper100ms SLO

1s 10s100

INFaaS100ms SLO

10 11

10ms SLO

19 20 21 22

Clockwork25ms SLO

44.9 45 45.1

50ms SLO

0909999.999.9999.99999.9999

0 500
Per

cen
tile

500ms SLO

0 500

500ms SLO

94.5 95 95.5

100ms SLO

245 250

250ms SLO

300 305
SLO (ms) Latency (ms) Latency (ms)Latency (ms)

500ms SLO

Fig. 5: Goodput and latency measurements for Clipper, INFaaS, and Clockwork. We deploy 15 instances of ResNet50 on 1 worker; each model
submits 16 concurrent requests in a closed loop. (Left) Request goodput. Goodput only counts requests that succeed within the SLO. (Right)
Request latency CDFs across all requests (including those rejected due to missed deadlines). Latency CDFs are scaled to highlight tail latency.

strategies are then created and enqueued. A strategy is created
per batch queue; latest is calculated by subtracting the batch
execution time from the deadline of the request at the head of
the queue. Empty batch queues are skipped.
Scheduling LOAD. Each LOAD executor also schedules
up to 5ms of outstandingwork. For a LOAD executor, the sched-
uler selects amodel by estimating eachmodel’s SLOviolations
given the model’s current state and outstanding requests. To
do this efficiently, the scheduler maintains and incrementally
updates load and demand statistics for models and GPUs:

• dm the total demand for each modelm
• am,g the demand allocation of modelm on GPU g.
• lg=

∑

mam,g the total load on each GPU g
Amodel’s total demanddm is the total estimated execution time
ofm’s outstanding requests; we update dm when requests for
that model arrive and complete. The demand allocations am,gform onGPU g are also updatedwhen requests arrive and com-
plete; they are calculated such that∑gam,g=dm. Demand allo-
cations are 0 forGPUswhere themodel is not loaded. OnGPUs
where themodel is loaded,demandallocationsare inverselypro-
portional to theGPU’s load,sinceoverloadedGPUswill be able
to execute proportionally less of the total demand. Each GPU’s
total load lg is the sum of its allocations across all models.
With these estimates, each model’s load priority is defined as

pm,g=dm−
∑

g
am,g ⋅

capacityg
lg

.

A model’s load priority estimates its unfulfilled work. For
example, a model that is not loaded on any GPUs has priority
equal to its outstanding work; a model loaded on a GPU that
sits mostly idle has negative priority since the GPU can serve
more work than the model demands.

Clockwork does not attempt to converge to a perfect demand
allocation each time the system’s state changes. Rather, Clock-
work incrementally updates each model’s demand allocation
and load priority (i)when new requests arrive for that model;
(ii)when an INFER is initiated for that model; (iii)when LOAD
and UNLOAD affect a model; and (iv)when a request crosses
the point where it can benefit from LOAD before its deadline.

The scheduler selects LOAD actions by choosing the highest
priority model that is not already loaded. Notably, models
with negative priority need not be loaded since their demands
are already met. Clockwork uses a least-recently-used (LRU)
eviction policy when selecting models to UNLOAD.
6 Evaluation
We next assess Clockwork’s ability to reliably serve DNNs
under a variety of workload conditions. We begin our
experimental evaluation with simple workloads in controlled
settings, before expanding to heterogeneous models and
diverse workloads. Our evaluation shows that Clockwork’s as-
sumptions about predictability hold, and result in a system that
can effectively meet SLOs and drastically reduce tail latency.
Experimental setup. We deploy Clockwork in a private
cluster of 12 Dell PowerEdge R740 Servers. Each server has
32 cores, 768GB RAM, and 2×NVIDIA Tesla v100 GPUS
with 32GBmemory. The servers are connected by 2×10Gbps
Ethernet on a shared network. In all experiments, we run the
controller, clients, and workers on separate machines.
6.1 HowDoes Clockwork Compare?
Webeginwithacomparison to twopriormodelservingsystems,
Clipper [16] and INFaaS [58]. For Clipper and Clockwork, we
provisiona single clustermachine touse1GPUto serve15sepa-
rate copiesofResNet50.ResNet50 is thede factomodelusedfor
comparisonpreviouslyby these systems;wechose15models as
this reached thememory limit of Clipper1. To evaluate INFaaS,
wedeployedanm5.24xlarge andap3.2xlargeEC2 instance
as the master and the worker, respectively. These are not iden-
tical experiment conditions; however, INFaaS is tightly inte-
gratedwithEC2,andcouldnotbedeployedonourcluster infras-
tructure. We include these results for qualitative comparison.
Offered load. For each model, we run 16 closed-loop
clients2. The serving systems may batch requests for the same
model instance, but requests to different instances cannot be
1INFaaS memory limits were reached at 64 models
2Open-loop clients yielded similar results

0

250

500

(a) Goodput(r/s)
MinorMajor

0
50

100
(b) Latency(ms)

MinorMajorMax

0
50

100
(c)Cold-Start(%)

MinorMajor

0
50

100
(d) PCIeUtilization(%)

UtilizationGoodput

0
50

100

0 10 20 30 40 50 60

(e) GPUUtilization(%)

Time (Minutes)

UtilizationGoodput

Fig. 6: Clockwork can serve thousands of models from a single
worker. From t = 0, the Major workload adds an additional model
per second, to a total of 3,600 models at t=60 (cf. §6.2.)

batched. We run multiple experiments, varying the target SLO
from 10ms to 500ms.
Goodput. Fig. 5 plots the goodput achieved by each system
as the target SLO varies from 10ms to 500ms. Goodput is
the number of successful requests that completed within the
target SLO; it excludes timed out requests and requests that
responded after the SLO.
With a high SLO of 500ms, Clockwork and INFaaS meet

their SLOs and have comparable goodput of approximately
800 r/s. Clipper’s goodput is substantially lower,asClipperonly
treats SLOs as an average latency target, not a strict threshold,
and converges to this target over timewithout bounding latency
variability. As SLOs tighten, goodput and tail latency deteri-
orate for both Clipper and INFaaS, and their goodput collapses
below a 100ms SLO. Like Clipper, INFaaS uses the SLO as
a coarse-grained goal for reactive policies. Consequently, only
Clockwork can continue serving SLOs below 100ms.
Fig. 5 also plots latency CDFs for Clipper, INFaaS, and

Clockwork. We scale the CDFs to emphasize tail latency. The
figure illustrates how both Clipper and INFaaS allow latency
higher than their SLOs. However, of note, with a 500ms SLO,
INFaaS successfully finds a configuration that can serve this
SLO, andmeets its SLO for 99%of its requests. By comparison,
Clockwork’s tail latency remains very close to the SLO in all
cases. For the 500ms SLO, Clockwork’s latency remains at
≈300ms because it schedules each model’s entire batch of 16
requests at a time, round-robin across models. With 15 models
and a 20ms batch-16 execution duration, Clockwork does not
exceed the optimal 300ms latency.
6.2 Can Clockwork Serve Thousands?
The previous experiment represented an idealized scenario,
with only a small number of models, each with a steady
sustained workload. We now examine the serving limits of
a single worker. We deploy 3,601 copies of ResNet50 to a
worker, and set a 100ms SLO. We submit two workloads: a
Major workload and aMinor workload. TheMajor workload

comprises 3,600 model instances; we vary the number of
instances that are active at any point in time, and evenly
distribute a workload of 1,000 r/s across all active models. The
Minor workload is a single model instance that maintains a
fixed 200 r/s request rate throughout the experiment.

Figure Fig. 6 (a) plots the goodput achieved by themajor and
minor workloads. From t=−5 to t=0 (we denote t in minutes)
only theMinor workload is present, achieving its full 200 r/s.
At t=0, we activate one model instance of the Major workload;
the addition of 1000 r/s fully saturates the GPU (e). After that,
we activate an additional model of theMajor workload every
1 second. As more model instances become active, the Major
workload’s goodput drops since each additional model forgoes
batching opportunities. At t=60 all 3,600 models are active,
each submitting approximately 0.28 r/s.
By t=3.5, 201 models have been activated, reaching the

capacity of GPU devicememory. To continue serving requests,
Clockwork begins swapping models on and off GPU; Fig. 6
(d) shows PCIe utilization rapidly rises to 100%. As more
models activate, an increasing number of requests in theMajor
workload find that their model is not loaded; Fig. 6 (c) plots the
rise in cold-starts, reaching 70% by the end of the experiment.
The minor workload, with its sustained request rate of 200 r/s,
does not experience any cold starts because its demand dwarfs
every other model after the first 5 seconds. As the number of
cold-starts increases, the demand on GPU execution decreases,
enabling the Minor workload’s goodput to gradually grow
back to 200 r/s. At approximately t=20, the bottleneck for the
Major workload shifts to PCIe utilization, enabling the Minor
workload’s latency to drop back to an average of 20ms (b).

This experiment illustrates how bottlenecks in Clockwork
can shift as workload demand changes. Clockwork can deal
with shifting bottlenecks even while serving a large number
of models. As illustrated in Fig. 6 (b), the maximum request
latency across the experiment did not exceed the 100ms SLO.
6.3 How LowCan Clockwork Go?
Clockwork’s predictability and centralized decision-making
enables it to satisfy low-latency SLOs. In this experiment, we
use six Clockwork workers and evaluate the lower limit on
SLOs that Clockwork can achieve bymeasuring the proportion
of successful requests while varying the SLO.We repeat the
experiment for six different workloads, varying the number
of ResNet50 instances (N=12 or 48) and cumulative request
rate (R=600 r/s, 1200 r/s, or 2400 r/s). For each experiment
run, we begin with an SLO of 2.9ms (1× the execution latency
of batch-1 ResNet50 inference). Every 30 seconds, we extend
the SLO by 50%; by the end of the experiment the SLO reaches
74ms.We run a separate open-loop client for eachmodelwith a
Poisson inter-arrival time distribution, and as before, allmodels
are independent (requests cannot be batched across models).
Workload satisfaction. Fig. 7 plots the workload satis-
faction for each experiment run. Workload satisfaction is the
ratio of goodput to offered load. A workload satisfaction of

0
0.2
0.4
0.6
0.8
1

2.9 4.4 6.5 10 15 22 33 50 74

Wo
rkl

oad
Sa

tisf
act

ion

SLO (ms)

N=12 R=600N=48 R=600N=12 R=1200
N=48 R=1200N=12 R=2400N=48 R=2400

Fig. 7: Workload satisfaction rates as we vary N , the number of
clients, andR, the request rate.

0
0.2
0.4
0.6
0.8
1

Wo
rkl

oad
Sa

tisf
act

ion

Without Batch Clients12 Big-Batch Clients48 Small-Batch Clients

1500
2000
2500
3000
3500

2.9 4.4 6.5 10 15 22 33 50 74Go
od

pu
t(r

/s)

SLO (ms)

Fig. 8: Workload satisfaction rates for latency-sensitive clients (top)
and workload goodput for batch clients (bottom).

1 means all requests received a successful response within
their SLO. For a load ofR=600 r/s and 1200 r/s, irrespective
of the number of models, Clockwork successfully satisfied
tight SLOs 10 and 22ms. Even at R =2400 r/s, Clockwork
comfortably managed an SLO of 74ms.
6.4 Can Clockwork Isolate Performance?
Clockwork can satisfy tight SLOs for latency-sensitive clients
in isolation; we next consider when the system is shared with
other users serving batch requests without latency SLOs. As
before, we use six Clockwork workers, and all clients use in-
stances ofResNet50.Weprovision six latency-sensitive clients,
each submitting a 200 r/s open-loop workload. We also provi-
sion several batch clients, which submit sustained closed-loop
workloads and do not have latency SLOs. Big-batch clients
have a concurrency of 16, while small-batch clients have a con-
currency of 4. Varying the concurrency affects the maximum
batch size Clockwork can achieve for batch client requests. We
considered three scenarios: (a) baseline without batch clients;
(b) 12 big-batch clients; and (c) 48 small-batch clients

Fig. 8 illustrates the workload satisfaction rates for latency-
sensitive clients and the total goodput achieved for the batch
clients. Clockwork successfully prioritizes latency-sensitive
requests over batch requests. Through SLO-aware scheduling,
it ensures that the workload satisfaction rates are unaffected
by the presence of other pending, less time-critical requests.
At the same time, Clockwork does not throttle batch requests
entirely, but schedules them during idle times or expected idle
times. However, when the SLOs are too tight (<15ms), many
latency-sensitive requests are rejected in advance, allowing
pending batch requests to pass through.
6.5 Are RealisticWorkloads Predictable?
We now ask whether executions remain predictable under
realistic workloads that comprise many concurrent users and
models. We also investigate whether Clockwork effectively

Model Family Count Model Variants
DenseNet [36] 4 121, 161, 198, 201
DLA [75] 1 34
GoogLeNet [67] 1
Inception [68] 1 v3
Xception [68] 1
MobilePose [33] 4 SPRN18, MNv3, RN18, RN50
ResNeSt [78] 4 14, 26, 40, 101
ResNet [30] 22 18, 18b, 34, 34b, 50, 50b, 50c, 50d, 50s,

50-1.8x, 101, 101b, 101c, 101d, 101s, 101-
1.9x,101-2.2x,152,152b,152c,152d,152s

ResNet-v2 [31] 5 18, 34, 50, 101, 152
ResNeXt [73] 3 50-32, 101-32, 101-64
SENet [35] 2 50-32, 101-32
TSN [70] 7 iv1, iv3, r18, r34, r50, r101, r152
Wide ResNet [76] 3 16-10, 28-10, 40-8
Winograd [45] 3 RN18, RN50, RN101

Table 2: List of models used in experiments.

exploits this predictability.
To answer these questions, we deploy Clockwork on 12

workers and replay a workload trace of Microsoft Azure Func-
tions (MAF) [61]. The trace records approximately 46,000
function workloads, counting the number of invocations of
each function,everyminute, for twoweeks. It interleaves awide
range of workloads, including heavy sustained workloads, low
utilization coldworkloads, burstyworkloads that fluctuate over
time, and workloads with periodic spikes [61]. We believe this
to be a representative workload for evaluation since serverless
platforms enable a wide range of applications and supporting
ML inference on serverless is an active area of research [10,39].

In this experiment, we replay six hours of the MAF trace in
real-time. We use 61 different models (Table 2) taken from the
ONNXModel Zoo [53] and the GluonCVModel Zoo [28].We
duplicate each model 66 times, resulting in a total of 4,026 in-
stances and reaching the main-memory capacity of our worker
machines. We replay ten or eleven function workloads for each
model instance. We configure Clockwork with a 100ms SLO.
Clockwork with realistic workloads. The time series in
Fig. 9 (a) shows the offered load and goodput achieved across
all models. For the 6 hour experiment, both the offered load
and goodput averaged 9,638 r/s – out of a total of 208 million
requests,only58 faileddue to action timingmispredictions,and
no requests timed out. All GPUs were fully utilized throughout
the experiment, yet no request exceeded the 100ms SLO.
Fig. 9 (b) plots the median, 99th percentile, and maximum

request latency over the course of the experiment. Latency
spikes occur every 5, 15, and 60minutes, due to the presence of
numerous periodic workloads within the trace [61]. Workload
spikes do not cause SLO violations because of latency head-
room; Fig. 9 (c) shows the average batch size for the experiment,
and with each workload spike, Clockwork can schedule larger
batches,withhigher latency. To evaluate the cold-start behavior
of this workload, we categorize a request as a cold-start if its
model is not already loaded into GPU’s memory before arrival.
For each 1-minute interval, Fig. 9 (d) counts the number of

8k
10k
12k

(a)

Tp
ut(

r/s) Offered Load Goodput

0
40
80

(b)

La
ten

cy
(m

s)

Maximum 99th %ile Median

0
2
4

(c) Ba
tch Siz
e

Mean

0
1000
2000

(d)

Mo
del

s Cold Warm

0
100
200
300

0 60 120 180 240 300 360

(e)

Tp
ut(

r/s)

Time (Minutes)

Coldstarts

Fig. 9: Microsoft Azure Functions (MAF) over Clockwork; see §6.5
for a description.

0909999.999.9999.99999.999999.9999999.99999999.9999999

0 5 10 15

Per
cen

tile

INFER

0909999.999.9999.99999.999999.9999999.99999999.9999999

0 5 10 15

Per
cen

tile

Error (ms)

0 5 10 15

Duration

LOAD

OverpredictUnderpredict

0 5 10 15

Completion

Error (ms)
Fig. 10: Clockwork prediction and completion errors for MAF trace.

unique models that have at least one cold-start, and at least one
warm-start. On average,987uniquemodels performcold-starts
each minute; or approximately 25% of all models. However,
while many models perform cold-starts, they only represent a
small fraction of all requests. Fig. 9 (e) plots the throughput of
cold-start requests, averaging 126 r/s, or 1.3% of all requests.
These results show that Clockwork can sustain significant load
for varied, realisticworkloads comprising thousands ofmodels.
Predictable executions. Clockwork’s scheduler relies on
accurate predictions of action latency, so to assess Clockwork’s
underlying assumptions of predictability, we next evaluate
the accuracy of Clockwork’s predictions. We measure the
latency of INFER and LOAD actions on Clockwork’s workers
and compare it to the time estimated by Clockwork’s controller
to derive a prediction error. Prediction errors comprise two
types: overprediction, when the real execution latency is faster
than predicted; and underprediction, when the real execution
latency is slower than predicted. Consistent overpredictions
can lead to idle resources, while consistent underpredictions
can cause SLO violations. Fig. 10 (top) plots the prediction
errors for INFER and LOAD actions. For INFER actions, the 99th
percentile of overpredictions and underpredictions is 144�s
and 55�s, respectively. Thereafter, the tail latency grows

0
2
4
6
8

0 1 2 3 4 5 6 7 8

Ba
tch Siz
e

Time (mins)

Mean

0
20000
40000
60000
80000

100000
120000

0 20 40 60 80 100 120 140

Pea
kG

oo
dp
ut(

r/s
)

Number ofWorkers

0
25000
50000
75000

100000

Re
q/s Offered LoadGoodput

Fig. 11: (Left) With 40 emulated workers, goodput is approximately
equal to offered load; peak goodput is achieved at appx. 40,000 r/s,
when all workers are fully utilized. (Right) Peak goodput achieved
with different numbers of emulated workers.

to exceed 10ms in a few extremely rare cases. Clockwork
consistently overpredicts more than it underpredicts, as it uses
a rolling 99th percentile measurement to make its predictions.
For LOAD actions, the 99th percentile of overpredictions and
underpredictions is 431�s and 348�s, respectively.

Fig. 10 (bottom) plots the completion time error. Clockwork
must accurately predict when a given action will complete,
taking into account any previously submitted actions (i.e.
queuing time). Individual prediction errors can compound,
leading to increased completion time error. For INFER actions,
the error compounds 4×, with a 99th percentile completion
error of ≈1ms. In extreme cases, Clockwork’s completion
error also grows to more than 10ms. However, the completion
error does not substantially exceed the action duration error,
implying that for Clockwork, erroneous predictions of outliers
are statistically independent.
6.6 Can Clockwork Scale?
Centralized scheduling presents a potential scalability bot-
tleneck, though prior work has demonstrated that centralized
schedulers can reach impressive scale [24, 57]. Our final
experiment examines the scalability ofClockwork’s controller.

To venture beyond the capacity of our testbed, we leverage a
specially-developed emulated worker that implements Clock-
work’s action interface. The emulated worker behaves identi-
cally to a bona fide Clockwork worker, except the LOAD and
INFER actions perform no meaningful work; instead, they wait
for a period of time according to the pre-profiled model mea-
surements before returning a response. The emulated worker is
indistinguishable from a real worker from the vantage point of
Clockwork’s controller. To bypass the limited network capacity
ofourtestbed,wemodifiedourclients to sendzero-length inputs
(network is nota fundamental limitation; see§7 fordiscussion).

Wemeasure the peak goodput achieved as we varyN , the
number of emulated workers. We run multiple experiments,
each with a different value ofN , from 10 to 150 in increments
of 10. We use the same models as described in §6.5, and a
similar workload. Instead of replaying the trace at a fixed rate,
we scale the trace and gradually offer more load in 60-second
intervals. Fig. 11 (Left) illustrates one experiment run with
N=40. Goodput follows the offered load almost perfectly up
to about 40,000 r/s, at which point all workers are fully utilized
and the goodput saturates.

Fig. 11 (Right) reports the peak goodput achieved with
different numbers of workers. We report the median values
across three experiment repetitions. The figure shows a
linear increase in the peak goodput as the number of workers
increases. BelowN=110, goodput is limited by workers reach-
ing full utilization. AtN=110, we reach a maximum goodput
of 103,387 r/s. At this point worker utilization stops being the
limiting factor; instead, the bottleneck shifts to Clockwork’s
controller. BeyondN=110 peak goodput declines.
6.7 Summary
In comparison with prior model serving systems, Clockwork
achieves superior goodput, serves considerably more models
concurrently, and violates substantially fewer SLOs. Owing
to a lack of performance variability, Clockwork can achieve
much tighter latency SLOs without sacrificing tail latency.
Clockwork’s underlying assumptions about predictable execu-
tions bear out in reality: by consolidating choice, a predictable
system that substantially curtails tail latency can be built.
Clockwork extends to a diverse range of workload condi-

tions not supported by prior systems, including supporting
thousands of models concurrently per GPU. Slow cold
starts can run alongside high-throughput workloads without
interference. Under all workload conditions, including cold
starts and even under overload, Clockwork meets most SLOs
without degrading service, and maintains close to maximal
possible goodput. Finally,Clockwork isolates users of different
models, enabling low-latency workloads to share the same
system with background batch workloads.
7 Discussion

Why consolidate choice? Philosophically, the encapsu-
lation, abstraction, and loose coupling of components are
essential design practices while the building blocks and use
cases of large systems are still in flux. Over time, the true
use cases for the system settle and the entire system may
in turn be replaced by a simpler, refined system that avoids
the over-engineering and generality of its constituent parts—
components that transpired to either be unnecessary in practice
or to impede the commonuse case of the system. The squashing
of layers through such specialization, effectively transforming
systems into abstract units, can counteract the infamous bloat
of modern software stacks. We designed Clockwork to be such
an abstract unit for model serving systems.
Machine learning. Clockwork focuses on DNN inference,
and excludes data preprocessing and postprocessing steps
that are user-defined and CPU-bound. Safely and predictably
executing these in Clockwork is a current research topic.
Individual DNN inferences are the atomic unit of work for

Clockwork. Increasingly, modern ML applications are com-
posed of pipelines or cascades of DNNs [34, 43, 62]. For these
applications, performance predictability is strongly desired.
We believe there are opportunities to leverage Clockwork’s

properties and performmore sophisticated pipeline scheduling
that provides end-to-end guarantees. Similarly, performance
predictability can influence system designs in other areas, such
as large language embedding models [11] that may require
dedicated or distributed accelerators. Expanding Clockwork
into other ML paradigms, such as deep reinforcement learning
and DNN training, raises philosophical questions about the
nature and limits of predictability.
Inference accelerators. The Clockwork approach gen-
eralizes readily beyond GPUs to other inference-specific
hardware accelerators [48], whose performance is arguably
even more predictable. TPUs [41], for instance, are explicitly
built around the idea of delegating control to software, while
also eschewing general purpose processing engines with
flexible control logic and generic memory hierarchies in favor
of high-level operations and explicit memory hierarchies.

On the other extreme, inferences can also be executed in soft-
ware on theCPU.Whilemanymodels are heavily parallel in na-
ture and execute orders ofmagnitude slower onCPUs, there are
other models where execution on CPU is acceptable. One such
example are recurrentneuralnetworks (RNNs)whichare funda-
mentally more sequential and often cannot effectively leverage
the available parallelism on GPUs or other accelerators.
Limitations of predictability. Consolidating choice
is only possible when you have control of, or guarantees
about, the system’s major bottleneck resources. For example,
Clockwork assumes workers have exclusive control over their
machine, and dedicated GPUs. Clockwork does not assume
exclusive control over the network, but does assume that the
network has mostly-predictable latency between the controller
and workers. In a shared setting, preserving predictability
becomes more challenging – though not impossible – and this
is an active area of research due to a general need to co-locate
latency critical datacenter services [42, 47].
Network. Clockwork does not explicitly consider the net-
work in its schedulingdecisions; theoccasionalnetwork latency
spikes of dozens of ms during our experiments had negligible
impact on our results. Our prototype routes all inputs and
outputs through the central controller which will become a bot-
tleneck at scale. We were able to reach the limits of our testbed
network with 12 workers and a sustained, single-model work-
load; to test beyond this we disabled inputs as described in §6.6.
This limitation is not fundamental; Clockwork’s controller
only requires requestmetadata to schedule requests, andwe are
working to remove this limitation with a tier of load balancers.
Security. Security is important for all multi-user systems,
since there arenocontainerorhypervisorboundaries separating
the workloads of different users. Clockwork does not explicitly
address security; however, Clockwork does not execute
arbitrary user code. Users must submit models in an abstract
format that we then compile to binary code under the covers.
Clockwork’s threatmodel resembles shared storage ordatabase

systems, where system correctness is the chief concern; we
have not verified any safety properties of Clockwork.
Fault tolerance. While Clockwork is a distributed system,
we do not address the challenges of tolerating failures when
serving models at large scale.This will require implementing
a fault-tolerant centralized scheduler; however, we note that
Clockwork’s predictable worker design will make pernicious
phenomena like grey failure [27, 37] far easier to detect.
Other benefits of predictability. Concentrating choice
makes it easier to implement other guarantees, such as SLOs
related to burstiness or per-request cost. The Azure trace
in our evaluation, for instance, contained regular, periodic
spikes; exploiting advanced knowledge is an appealing
future avenue for Clockwork. A further benefit of predictable
system components is performance clarity [55]: performance
bottlenecks and upcoming tasks in Clockwork are easy to
reason about. Clockwork’s controller also provides a central
point for explanation, since the controller has complete
visibility of the expected and actual request behavior.
8 RelatedWork

Model serving. We directly compared Clockwork to Clip-
per [16] and INFaaS [58] in §6.1; here we provide additional
comments. Both Clipper and INFaaS are designed as wrappers
around existing model execution frameworks: Clipper, in
order to provide a unifying abstraction; INFaaS, in order to
exploit heterogeneous execution strategies. Being agnostic
to the underlying execution engine sacrifices predictability
and control over model execution. Both systems treat latency
SLOs as long-term, reactive targets; by contrast, Clockwork
is explicitly designed to consolidate choice, and exploit pre-
dictability by making proactive decisions. Clipper and INFaaS
propose several orthogonal concepts that are compatible with
Clockwork. Clipper’s model selection layer could be superim-
posed on Clockwork. INFaaS’s model variant concept could
be integrated into Clockwork; we found similar predictability
properties held for DNNs executing on dedicated CPU cores.
Several other projects investigate model serving in virtu-

alized cloud environments and on serverless platforms, where
predictability is in the hands of the cloud provider [10, 44, 77].
Like INFaaS, these model throughput, latency, and accuracy
together for optimal model selection, but, unlike Clockwork,
they do not use the backend predictability and latency SLOs for
making proactive scheduling decisions. In industry, TFS2 [51]
is a proprietary model hosting service at Google, about which
public information is not available. Amazon SageMaker [59]
and Google AI Platform [26] are public cloud DNN serving
systems with a similar interface to Clockwork: upload your
model, then make inference requests. Both use containers
under the covers as an isolation mechanism, and users suffer
the associated cold-start latency. Beyond these details, further
design information is not publicly known.

Real-time systems. Performance predictability, especially
temporal safety, is also an important concern for safety-critical
real-time systems. However in general, real-time systems are
designed for periodic or sporadicworkloads [8] with known
minimum inter-arrival times and worst-case execution times,
or for scenarios where the set of all inference requests is known
in advance [66]. Soft-real-time systems [12] consider weaker
notions of timeliness similar to the latency SLOs considered
in this paper, but mainly target periodic or sporadic workloads.
Clockwork, in contrast, makes no a priori assumptions
about its workloads. Prior real-time systems work has also
proposed mechanisms to tame the unpredictability inside
GPUs [6, 9, 20, 22, 54]. Elliott and Anderson [21], for example,
proposed interrupt handlingmechanisms to circumvent the pro-
prietary GPU drivers that ignore scheduling priorities, while
Yang et al. [74] suggested avoiding synchronization anomalies
throughmore careful use of CUDA synchronization primitives.
Thesemechanisms are designed to facilitate an a priori schedu-
lability analysis— mathematically bounding the blocking
delays due to contention. Such bounds are orthogonal to Clock-
work, which does not require strict worst-case guarantees.
9 Conclusion
As DNN inferences become increasingly central to interactive
applications, the requirements for fast response tighten, the
volume of requests expands, and the number of models grows.
Our model serving system, Clockwork, meets these challenges.
Clockwork efficiently fulfills aggressive tail-latency SLOs
while supporting thousands of DNN models with different
workload characteristics concurrently on each GPU, and scal-
ing out to additional worker machines for increased capacity.
The systemalso successfully isolatesmodels fromperformance
interference caused by othermodels served on the same system.
Our results derive from our design methodology of recursively
ensuring all internal architecture components have predictable
performance by concentrating all choices in the centralized
controller. Notably, our approach required us to either circum-
vent canonical best-effort mechanisms or orchestrate them to
become predictable, and illustrates how consolidating choice
can be applied in practice to achieve predictable performance.
Acknowledgements
We thank our shepherd Junfeng Yang and the anonymous
reviewers for their insightful feedback that helped improve
our work. Our work was partially supported by NSF CAREER
Grant #1553579.
References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, AndyDavis, Jeffrey Dean,Matthieu Devin, Sanjay
Ghemawat, Geoffrey Irving, Michael Isard, Kudlur
Manjunath, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan

Yu, and Xiaoqiang Zheng. TensorFlow: A System for
Large-Scale Machine Learning. In Proceedings of the
12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2016.

[2] Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson,
Colin Meek, Vishesh Khemani, Stefan Fulger, Pan Gu,
Lakshminath Bhuvanagiri, Jason Hunter, et al. Slicer:
Auto-Sharding for Datacenter Applications. In Pro-
ceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2016.

[3] Deepak Agarwal, Bo Long, Jonathan Traupman, Doris
Xin, and Liang Zhang. LASER: A Scalable Response
Prediction Platform for Online Advertising. In Proceed-
ings of the 7th ACM International Conference on Web
Search and Data Mining (WSDM), 2014.

[4] Saamer Akhshabi and Constantine Dovrolis. The
Evolution of Layered Protocol Stacks leads to an
Hourglass-Shaped Architecture. In Proceedings of the
2011 Conference of the ACM Special Interest Group on
Data Communication (SIGCOMM), 2011.

[5] Allied Market Research. Global machine learning
chip market to garner $37.85 Billion by 2025, at 40.8%
CAGR. https://www.globenewswire.com/news-
release/2020/02/18/1986370/0/en/Global-
Machine-Learning-Chip-Market-to-Garner-
37-85-Billion-by-2025-at-40-8-CAGR.html,
February 2020.

[6] Tanya Amert, Nathan Otterness, Ming Yang, James H
Anderson, and FDonelson Smith. Gpu scheduling on the
NVIDIA TX2: Hidden details revealed. In Proceedings
of the 38th IEEE Real-Time Systems Symposium (RTSS),
2017.

[7] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker,
and Ion Stoica. Effective Straggler Mitigation: Attack of
the Clones. In Proceedings of the 10th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), 2013.

[8] Theodore P Baker and Sanjoy K Baruah. Schedulability
analysis of multiprocessor sporadic task systems.
Handbook of Real-Time and Embedded Systems, pages
3–31, 2007.

[9] Joshua Bakita,NathanOtterness, JamesHAnderson, and
F Donelson Smith. Scaling Up: The Validation of Em-
pirically Derived Scheduling Rules on NVIDIA GPUs.
In 14th Workshop on Operating Systems Platforms for
Embedded Real-Time Applications (OSPERT), 2018.

[10] Anirban Bhattacharjee, Ajay Dev Chhokra, Zhuangwei
Kang, Hongyang Sun, Aniruddha Gokhale, and Gabor

Karsai. Barista: Efficient and Scalable Serverless
Serving System for Deep Learning Prediction Services.
In Proceedings of the 7th IEEE International Conference
on Cloud Engineering (IC2E), 2019.

[11] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. LanguageModels are Few-Shot Learners.
arXiv preprint arXiv:2005.14165, 2020.

[12] Giorgio Buttazzo, Giuseppe Lipari, Luca Abeni, and
Marco Caccamo. Soft Real-Time Systems: Predictability
vs. Efficiency: Predictability Vs. Efficiency. Springer
Science & Business Media, 2005.

[13] Giovanni Campagna, Rakesh Ramesh, Silei Xu, Michael
Fischer, andMonica S Lam. Almond: The Architecture
of an Open, Crowdsourced, Privacy-Preserving, Pro-
grammable Virtual Assistant. In Proceedings of the 26th
InternationalWorldWideWebConference (WWW), 2017.

[14] Wai Chee Yau. How Zendesk Serves TensorFlowMod-
els in Production. https://medium.com/zendesk-
engineering/how-zendesk-serves-tensorflow-
models-in-production-751ee22f0f4b, February
2017.

[15] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, et al. TVM: An
Automated End-to-End Optimizing Compiler for Deep
Learning. In Proceedings of the 13th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), 2018.

[16] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J
Franklin, Joseph E Gonzalez, and Ion Stoica. Clipper: A
Low-Latency Online Prediction Serving System. In Pro-
ceedings of the 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2017.

[17] Brian Dalessandro, Daizhuo Chen, Troy Raeder, Claudia
Perlich, Melinda Han Williams, and Foster Provost.
Scalable Hands-Free Transfer Learning for Online
Advertising. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (KDD), 2014.

[18] Jeffrey Dean and Luiz André Barroso. The Tail at Scale.
Communications of the ACM, 56(2):74–80, 2013.

[19] Christina Delimitrou and Christos Kozyrakis. Amdahl’s
Law for Tail Latency. Communications of the ACM,
61(8):65–72, 2018.

https://www.globenewswire.com/news-release/2020/02/18/1986370/0/en/Global-Machine-Learning-Chip-Market-to-Garner-37-85-Billion-by-2025-at-40-8-CAGR.html
https://www.globenewswire.com/news-release/2020/02/18/1986370/0/en/Global-Machine-Learning-Chip-Market-to-Garner-37-85-Billion-by-2025-at-40-8-CAGR.html
https://www.globenewswire.com/news-release/2020/02/18/1986370/0/en/Global-Machine-Learning-Chip-Market-to-Garner-37-85-Billion-by-2025-at-40-8-CAGR.html
https://www.globenewswire.com/news-release/2020/02/18/1986370/0/en/Global-Machine-Learning-Chip-Market-to-Garner-37-85-Billion-by-2025-at-40-8-CAGR.html
https://medium.com/zendesk-engineering/how-zendesk-serves-tensorflow-models-in-production-751ee22f0f4b
https://medium.com/zendesk-engineering/how-zendesk-serves-tensorflow-models-in-production-751ee22f0f4b
https://medium.com/zendesk-engineering/how-zendesk-serves-tensorflow-models-in-production-751ee22f0f4b

[20] Glenn A Elliott and James H Anderson. Real-world Con-
straints of GPUs in Real-Time Systems. In Proceedings
of the 17th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications
(RTCSA), 2011.

[21] Glenn A Elliott and James HAnderson. Robust real-time
multiprocessor interrupt handling motivated by GPUs.
In Proceedings of the 24th Euromicro Conference on
Real-Time Systems (ECRTS), 2012.

[22] Glenn A Elliott and James H Anderson. An Optimal
k-Exclusion Real-Time Locking Protocol Motivated by
Multi-GPUSystems. Real-Time Systems, 49(2):140–170,
2013.

[23] Anshul Gandhi, Mor Harchol-Balter, Ram Raghunathan,
and Michael A Kozuch. Autoscale: Dynamic, robust
capacity management for multi-tier data centers. ACM
Transactions on Computer Systems, 30(4):1–26, 2012.

[24] IonelGog,MalteSchwarzkopf,AdamGleave,RobertNM
Watson, and Steven Hand. Firmament: Fast, Centralized
Cluster Scheduling at Scale. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2016.

[25] Ian Goodfellow, Yoshua Bengio, and Aaron
Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[26] Google AI Platform. Retrieved May 2020 from
https://cloud.google.com/ai-platform/, 2020.

[27] Haryadi S Gunawi, Riza O Suminto, Russell Sears,
Casey Golliher, Swaminathan Sundararaman, Xing Lin,
Tim Emami, Weiguang Sheng, Nematollah Bidokhti,
Caitie McCaffrey, et al. Fail-slow at scale: Evidence of
hardware performance faults in large production systems.
ACM Transactions on Storage, 14(3):1–26, 2018.

[28] JianGuo,HeHe,TongHe,LeonardLausen,MuLi,Haibin
Lin,Xingjian Shi,ChenguangWang, JunyuanXie, Sheng
Zha, et al. GluonCV and GluonNLP: Deep Learning in
ComputerVisionandNaturalLanguageProcessing. Jour-
nal of Machine Learning Research, 21(23):1–7, 2020.

[29] Kim Hazelwood, Sarah Bird, David Brooks, Soumith
Chintala, Utku Diril, Dmytro Dzhulgakov, Mohamed
Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, et al.
Applied Machine Learning at Facebook: A Datacenter
Infrastructure Perspective. In Proceedings of the 24th
IEEE International Symposium on High-Performance
Computer Architecture (HPCA), 2018.

[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep Residual Learning for Image Recognition. In
Proceedings of the IEEE 2016 Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Identity Mappings in Deep Residual Networks.
In Proceedings of the 14th European Conference on
Computer Vision (ECCV), 2016.

[32] Jeremy Hermann andMike Del Balso. Meet Michelan-
gelo: Uber’s Machine Learning Platform. https:
//eng.uber.com/michelangelo/, September 2017.

[33] AndrewHoward,Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun
Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching
for MobileNetV3. In Proceedings of the IEEE 2019
Conference on Computer Vision (ICCV), 2019.

[34] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik,
Shivaram Venkataraman, Paramvir Bahl, Matthai Phili-
pose, Phillip B Gibbons, and Onur Mutlu. Focus: Query-
ing LargeVideoDatasetwithLowLatency andLowCost.
In Proceedings of the 13th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI), 2018.

[35] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-Excitation
Networks. In Proceedings of the IEEE 2018 Conference
on Computer Vision and Pattern Recognition (CVPR),
2018.

[36] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and
Kilian QWeinberger. Densely Connected Convolutional
Networks. In Proceedings of the IEEE 2017 Conference
on Computer Vision and Pattern Recognition (CVPR),
2017.

[37] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R
Lorch, Yingnong Dang, Murali Chintalapati, and
Randolph Yao. Gray Failure: The Achilles’ Heel of
Cloud-Scale Systems. In Proceedings of the 16th Work-
shop on Hot Topics in Operating Systems (HotOS), 2017.

[38] Qi Huang, Ken Birman, Robbert Van Renesse, Wyatt
Lloyd, Sanjeev Kumar, and Harry C Li. An Analysis
of Facebook Photo Caching. In Proceedings of the
24th ACM Symposium on Operating Systems Principles
(SOSP), 2013.

[39] Vatche Ishakian, Vinod Muthusamy, and Aleksander
Slominski. Serving Deep LearningModels in a Server-
less Platform. In Proceedings of the 6th IEEE Interna-
tional Conference on Cloud Engineering (IC2E), 2018.

[40] Chris Jones, John Wilkes, Niall Murphy, and Cody
Smith. Site Reliability Engineering: How Google
Runs Production Systems. O’Reilly Media, 2016.
https://landing.google.com/sre/sre-book/
chapters/service-level-objectives/.

http://www.deeplearningbook.org
https://cloud.google.com/ai-platform/
https://eng.uber.com/michelangelo/
https://eng.uber.com/michelangelo/
https://landing.google.com/sre/sre-book/chapters/service-level-objectives/
https://landing.google.com/sre/sre-book/chapters/service-level-objectives/

[41] Norman P Jouppi, Cliff Young, Nishant Patil, David
Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah
Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-
Datacenter Performance Analysis of a Tensor Processing
Unit. InProceedingsof the44thACM/IEEEInternational
Symposium on Computer Architecture (ISCA), 2017.

[42] Kostis Kaffes, Dragos Sbirlea, Yiyan Lin, David Lo, and
Christos Kozyrakis. Leveraging Application Classes
to Save Power in Highly-Utilized Data Centers. In
Proceedings of the 11th ACM Symposium on Cloud
Computing (SoCC), 2020.

[43] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis,
and Matei Zaharia. NoScope: Optimizing Neural
Network Queries over Video at Scale. Proceedings of
the VLDB Endowment, 10(11), 2017.

[44] Ram Srivatsa Kannan, Lavanya Subramanian, Ashwin
Raju, Jeongseob Ahn, Jason Mars, and Lingjia Tang.
GrandSLAm: Guaranteeing SLAs for Jobs inMicroser-
vices Execution Frameworks. In Proceedings of the 14th
European Conference on Computer Systems (EuroSys),
2019.

[45] Andrew Lavin and Scott Gray. Fast Algorithms for
Convolutional Neural Networks. In Proceedings of the
IEEE 2016 Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[46] Jialin Li,NaveenKrSharma,DanRKPorts, andStevenD
Gribble. Talesof theTail:Hardware,OS,andApplication-
Level Sources of Tail Latency. In Proceedings of the 5th
ACM Symposium on Cloud Computing (SoCC), 2014.

[47] David Lo, Liqun Cheng, Rama Govindaraju,
Parthasarathy Ranganathan, and Christos Kozyrakis.
Heracles: Improving Resource Efficiency at Scale.
In Proceedings of the 42nd Annual International
Symposium on Computer Architecture (ISCA), 2015.

[48] Peter Mattson, Vijay Janapa Reddi, Christine Cheng,
Cody Coleman, Greg Diamos, David Kanter, Paulius
Micikevicius, David Patterson, Guenther Schmuelling,
Hanlin Tang, et al. MLPerf: An industry standard
benchmark suite for machine learning performance.
IEEEMicro, 40(2):8–16, 2020.

[49] Neural Network Exchange Format (NNEF). Retrieved
May 2020 from https://www.khronos.org/nnef/,
2020.

[50] NVIDIA TensorRT. Retrieved May 2020 from
https://developer.nvidia.com/tensorrt, 2020.

[51] ChristopherOlston,NoahFiedel,KirilGorovoy,Jeremiah
Harmsen, Li Lao, Fangwei Li, Vinu Rajashekhar, Sukriti
Ramesh, and Jordan Soyke. TensorFlow-Serving:

Flexible, High-PerformanceML Serving. Workshop on
ML Systems at NeurIPS 2017, 2017.

[52] Open Neural Network Exchange Format: The new open
ecosystem for interchangeable AI models. Retrieved
May 2020 from https://onnx.ai/, 2020.

[53] The ONNX Model Zoo. Retrieved May 2020 from
https://github.com/onnx/models, 2020.

[54] Nathan Otterness, Ming Yang, Tanya Amert, James An-
derson, and F Donelson Smith. Inferring the scheduling
policies of an embedded cuda gpu. In 13th Workshop on
Operating Systems Platforms for Embedded Real-Time
Applications (OSPERT), 2017.

[55] Kay Ousterhout, Christopher Canel, Sylvia Ratnasamy,
and Scott Shenker. Monotasks: Architecting for
Performance Clarity in Data Analytics Frameworks. In
Proceedings of the 26th ACM Symposium on Operating
Systems Principles (SOSP), 2017.

[56] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott
Shenker, and Byung-Gon Chun. Making Sense of Perfor-
mance in Data Analytics Frameworks. In Proceedings
of the 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2015.

[57] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan,
Devavrat Shah, and Hans Fugal. FastPass: A Centralized
“Zero-Queue” Datacenter Network. In Proceedings of
the 2014 Conference of the ACM Special Interest Group
on Data Communication (SIGCOMM), 2014.

[58] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and
Christos Kozyrakis. INFaaS: A Model-less Inference
Serving System. arXiv preprint arXiv:1905.13348, 2019.

[59] Deploying a Model on Amazon SageMaker
Hosting Services. Retrieved May 2020 from
https://docs.aws.amazon.com/sagemaker/
latest/dg/how-it-works-hosting.html, 2020.

[60] Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Et-
zioni. Green AI. arXiv preprint arXiv:1907.10597, 2019.

[61] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri,
Gohar Chaudhry, Paul Batum, Jason Cooke, Eduardo
Laureano, Colby Tresness, Mark Russinovich, and Ri-
cardo Bianchini. Serverless in theWild: Characterizing
and Optimizing the Serverless Workload at a Large
Cloud Provider. In Proceedings of the 2020 USENIX
Annual Technical Conference (ATC ’20), 2020.

[62] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao,
Bingyu Kong,Matthai Philipose, ArvindKrishnamurthy,
and Ravi Sundaram. Nexus: a GPU Cluster Engine
for Accelerating DNN-based Video Analysis. In

https://www.khronos.org/nnef/
https://developer.nvidia.com/tensorrt
https://onnx.ai/
https://github.com/onnx/models
https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-hosting.html
https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-hosting.html

Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP), 2019.

[63] Julien Simon. Amazon Elastic Inference – GPU-
Powered Deep Learning Inference Acceleration. https:
//aws.amazon.com/blogs/aws/amazon-elastic-
inference-gpu-powered-deep-learning-
inference-acceleration/, November 2018.

[64] Kacper Sokol and Peter A Flach. Glass-Box: Explaining
AI DecisionsWith Counterfactual Statements Through
ConversationWith a Voice-enabled Virtual Assistant. In
Proceedings of the 27th International Joint Conference
on Artificial Intelligence (IJCAI), 2018.

[65] Emma Strubell, AnanyaGanesh, andAndrewMcCallum.
Energy and Policy Considerations for Deep Learning
in NLP. arXiv preprint arXiv:1906.02243, 2019.

[66] Jinghao Sun, Jing Li, Zhishan Guo, An Zou, Xuan Zhang,
Kunal Agrawal, and Sanjoy Baruah. Real-Time Schedul-
ing upon a Host-Centric Acceleration Architecture
with Data Offloading. In Proceedings of the 26th IEEE
Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2020.

[67] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre
Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich.
Going Deeper with Convolutions. In Proceedings of the
IEEE 2015 Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

[68] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and ZbigniewWojna. Rethinking the Inception
Architecture for Computer Vision. In Proceedings of the
IEEE 2016 Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[69] Ymir Vigfusson, HussamAbu-Libdeh, Mahesh Balakr-
ishnan, Ken Birman, Robert Burgess, Gregory Chockler,
Haoyuan Li, and Yoav Tock. Dr. Multicast: Rx for Data
Center Communication Scalability. In Proceedings
of the 5th European Conference on Computer systems
(EuroSys), 2010.

[70] LiminWang,YuanjunXiong,ZheWang,YuQiao,Dahua
Lin,Xiaoou Tang, andLucVanGool. Temporal Segment
Networks: Towards Good Pratices for Deep Action
Recognition. In Proceedings of the 14th European
Conference on Computer Vision (ECCV), 2016.

[71] Carole-Jean Wu, David Brooks, Kevin Chen, Douglas
Chen,SyChoudhury,MaratDukhan,KimHazelwood,El-
dad Isaac, Yangqing Jia, Bill Jia, et al. Machine Learning
atFacebook:Understanding Inferenceat theEdge. InPro-
ceedings of the 2019 IEEE International Symposium on
HighPerformanceComputerArchitecture (HPCA), 2019.

[72] Bin Xiao, Haiping Wu, and Yichen Wei. Simple
Baselines for Human Pose Estimation and Tracking.
In Proceedings of the 16th European Conference on
Computer Vision (ECCV), 2018.

[73] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu,
and Kaiming He. Aggregated Residual Transformations
for Deep Neural Networks. In Proceedings of the IEEE
2017 Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[74] Ming Yang, Nathan Otterness, Tanya Amert, Joshua
Bakita, James H Anderson, and F Donelson Smith.
Avoiding Pitfalls when using NVIDIA GPUs for Real-
Time Tasks in Autonomous Systems. In Proceedings
of the 30th Euromicro Conference on Real-Time Systems
(ECRTS), 2018.

[75] Fisher Yu, DequanWang, Evan Shelhamer, and Trevor
Darrell. Deep Layer Aggregation. In Proceedings of the
IEEE 2018 Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

[76] SergeyZagoruyko andNikosKomodakis. WideResidual
Networks. arXiv preprint arXiv:1605.07146, 2016.

[77] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng
Yan. Mark: ExploitingCloud Services forCost-Effective,
SLO-aware Machine Learning Inference Serving. In
Proceedings of the 2019 USENIX Annual Technical
Conference (ATC), 2019.

[78] Hang Zhang, ChongruoWu, Zhongyue Zhang, Yi Zhu,
Zhi Zhang,Haibin Lin,Yue Sun, TongHe, JonasMueller,
RManmatha, et al. ResNeSt: Split-Attention Networks.
arXiv preprint arXiv:2004.08955, 2020.

https://aws.amazon.com/blogs/aws/amazon-elastic-inference-gpu-powered-deep-learning-inference-acceleration/
https://aws.amazon.com/blogs/aws/amazon-elastic-inference-gpu-powered-deep-learning-inference-acceleration/
https://aws.amazon.com/blogs/aws/amazon-elastic-inference-gpu-powered-deep-learning-inference-acceleration/
https://aws.amazon.com/blogs/aws/amazon-elastic-inference-gpu-powered-deep-learning-inference-acceleration/

A Artifact Appendix
A.1 Abstract
The artifact consists of Clockwork’s prototype source code,
instructions for building from source, and directions for prepar-
ing the environment. The instructions for launching a Docker
instance that has all dependencies pre-installed is provided
as well. The artifact also contains scripts, descriptions, and
instructions to run the experiments automatically or manually
for reproducing the graphs and results presented in the paper.
A.2 Artifact check-list
⋅ Program: dnn-model-serving, multi-tenant
⋅ Compilation: cmake, g++
⋅ Binary: worker, controller, client
⋅ Model: distributed, multi-tenant
⋅ Data set: azure-functions-trace-2019, poission-distribution
⋅ Run-time environment: Linux, CUDA, network
⋅ Hardware: NVIDIA, Tesla-V100
⋅ Execution: automated, manual
⋅ Metrics: throughput, latency, SLO-violation, tail-latency
⋅ Output: telemetry-measurements, table, graph
⋅ Experiments: throughput-latency, scalability, predictability, SLO,
tail-latency

⋅ Required disk space:
Clockwork: 210MB
Total including compiled models and dataset: 12GB

⋅ Expected experiment run time:About 17 hours in total
⋅ Public link:
https://gitlab.mpi-sws.org/cld/ml/clockwork

⋅ Code licenses:
Clockwork: Apache License 2.0
TVM: Apache License 2.0
CUDACommon Library: Apache License 2.0
Catch2: Boost Software License 1.0

⋅ Data licenses:
Azure Functions Trace 2019: CC-BYAttribution

A.3 Description
A.3.1 How to access

The artifact is publicly available at
https://gitlab.mpi-sws.org/cld/ml/clockwork

A.3.2 Hardware dependencies

To reproduce the exact experiment results, worker machines
must have 768GB RAM or higher, 16 CPU cores or more, at
least one 32GB Tesla v100 GPU and 10Gbps network. The
large-scale experiment with Azure Functions (Fig. 9) requires
12 worker machines. Most other experiments require fewer
worker machines; details on the number of machines for each
experiment and environment customization guide is provided
in each experiment’s documentation.

A.3.3 Software dependencies

⋅ Clockwork:
Ubuntu 18.04 or later, CUDA v9.0+, libtbb-dev, libasio-dev,
libconfig++-dev, libboost-all-dev, g++-8, make, cmake,
automake, autoconf, libtool, curl, unzip, clang, llvm, and
protobuf.
A Dockerfile is provided to facilitate the build process.

⋅ Data analysis and plotting scripts:
Python 3.x and the numpy, pandas, matplotlib, and seaborn
libraries.

A.3.4 Data sets

⋅ Publicly released Azure Functions 2019 trace [61]
https://gitlab.mpi-sws.org/cld/trace-
datasets/azure-functions

A.3.5 Models

The DNN models pre-compiled for NVIDIA Volta V100
GPUs are accessible at
https://gitlab.mpi-sws.org/cld/ml/clockwork-
modelzoo-volta

A.4 Installation
⋅ Installation pre-requisites:
https://gitlab.mpi-sws.org/cld/ml/clockwork/
-/blob/master/docs/prerequisites.md

⋅ Building Clockwork:
https://gitlab.mpi-sws.org/cld/ml/clockwork/
-/blob/master/docs/building.md

⋅ Setting-up the environment:
https://gitlab.mpi-sws.org/cld/ml/clockwork/
-/blob/master/docs/environment.md

⋅ Clockwork configuration:
https://gitlab.mpi-sws.org/cld/ml/clockwork/
-/blob/master/docs/configuration.md

A.5 Experiment workflow
Experiments can be run using the scripts provided in the
repository. We have also provided instructions to run the
experiments manually. To get started with Clockwork, we
recommend getting the system running manually, in order to
understand the pieces involved, and to ensure the system has
been configured appropriately for your machines. Afterwards,
you might choose to run the experiments using the provided
scripts or manually. The experiments repository is available at
https://gitlab.mpi-sws.org/cld/ml/clockwork-
results

https://gitlab.mpi-sws.org/cld/ml/clockwork
https://gitlab.mpi-sws.org/cld/ml/clockwork
https://gitlab.mpi-sws.org/cld/trace-datasets/azure-functions
https://gitlab.mpi-sws.org/cld/trace-datasets/azure-functions
https://gitlab.mpi-sws.org/cld/ml/clockwork-modelzoo-volta
https://gitlab.mpi-sws.org/cld/ml/clockwork-modelzoo-volta
https://gitlab.mpi-sws.org/cld/ml/clockwork/-/blob/master/docs/prerequisites.md
https://gitlab.mpi-sws.org/cld/ml/clockwork/-/blob/master/docs/prerequisites.md
https://gitlab.mpi-sws.org/cld/ml/clockwork/-/blob/master/docs/building.md
https://gitlab.mpi-sws.org/cld/ml/clockwork/-/blob/master/docs/building.md
https://gitlab.mpi-sws.org/cld/ml/clockwork/-/blob/master/docs/environment.md
https://gitlab.mpi-sws.org/cld/ml/clockwork/-/blob/master/docs/environment.md
https://gitlab.mpi-sws.org/cld/ml/clockwork/-/blob/master/docs/configuration.md
https://gitlab.mpi-sws.org/cld/ml/clockwork/-/blob/master/docs/configuration.md
https://gitlab.mpi-sws.org/cld/ml/clockwork-results
https://gitlab.mpi-sws.org/cld/ml/clockwork-results

Experiment Related figure Execution Documentation and scripts
time (hr)

HowDoes Clockwork Compare? Fig. 5 3 https://gitlab.mpi-sws.org/cld/ml/clockwork-
results/-/tree/master/sec61_fig5

Can Clockwork Serve Thousands? Fig. 6 1.5 https://gitlab.mpi-sws.org/cld/ml/clockwork-
results/-/tree/master/sec62_fig6

How Low Can Clockwork Go? Fig. 7 1 https://gitlab.mpi-sws.org/cld/ml/clockwork-
results/-/tree/master/sec63_fig7

Can Clockwork Isolate Performance? Fig. 8 1 https://gitlab.mpi-sws.org/cld/ml/clockwork-
results/-/tree/master/sec64_fig8

Are Realistic Workloads Predictable? Fig. 10 8 https://gitlab.mpi-sws.org/cld/ml/clockwork-
results/-/tree/master/sec65_fig9_fig10

Can Clockwork Scale? Fig. 11 2 https://gitlab.mpi-sws.org/cld/ml/clockwork-
results/-/tree/master/sec66_fig11

Table 3: The experiments reproducing the presented results in this paper, their related figures, execution time, and links to the extensive
documentation and scripts for each experiment.

A.6 Evaluation and expected results
The experiments repository is structured based on §6. We
have provided the experiment titles, their related figures on
the paper, execution time of each experiment, and the links
to directories containing the respective descriptions, scripts
and instructions in Table 3.
A.7 Experiment customization
The directions for running each experiment manually is
provided in each experiment’s documentation. Instructions
for customizing the experiment environment is provided at
https://gitlab.mpi-sws.org/cld/ml/clockwork/-/
blob/master/docs/customizing.md

A.8 AEMethodology
Submission, reviewing and badging methodology:
https://www.usenix.org/conference/osdi20/call-
for-artifacts

https://gitlab.mpi-sws.org/cld/ml/clockwork-results/-/tree/master/sec61_fig5
https://gitlab.mpi-sws.org/cld/ml/clockwork-results/-/tree/master/sec61_fig5
https://gitlab.mpi-sws.org/cld/ml/clockwork-results/-/tree/master/sec62_fig6
https://gitlab.mpi-sws.org/cld/ml/clockwork-results/-/tree/master/sec62_fig6
https://gitlab.mpi-sws.org/cld/ml/clockwork-results/-/tree/master/sec63_fig7
https://gitlab.mpi-sws.org/cld/ml/clockwork-results/-/tree/master/sec63_fig7
https://gitlab.mpi-sws.org/cld/ml/clockwork-results/-/tree/master/sec64_fig8
https://gitlab.mpi-sws.org/cld/ml/clockwork-results/-/tree/master/sec64_fig8
https://gitlab.mpi-sws.org/cld/ml/clockwork-results/-/tree/master/sec65_fig9_fig10
https://gitlab.mpi-sws.org/cld/ml/clockwork-results/-/tree/master/sec65_fig9_fig10
https://gitlab.mpi-sws.org/cld/ml/clockwork-results/-/tree/master/sec66_fig11
https://gitlab.mpi-sws.org/cld/ml/clockwork-results/-/tree/master/sec66_fig11
https://gitlab.mpi-sws.org/cld/ml/clockwork/-/blob/master/docs/customizing.md
https://gitlab.mpi-sws.org/cld/ml/clockwork/-/blob/master/docs/customizing.md
https://www.usenix.org/conference/osdi20/call-for-artifacts
https://www.usenix.org/conference/osdi20/call-for-artifacts

	Introduction
	Background and Motivation
	Predictable Performance
	Design
	Overview
	Consolidating Choice
	Challenges for Predictable Inference
	Predictable DNN Worker
	Central Controller

	Implementation
	Models
	DNN Workers
	Central Controller

	Evaluation
	How Does Clockwork Compare?
	Can Clockwork Serve Thousands?
	How Low Can Clockwork Go?
	Can Clockwork Isolate Performance?
	Are Realistic Workloads Predictable?
	Can Clockwork Scale?
	Summary

	Discussion
	Related Work
	Conclusion
	Artifact Appendix
	Abstract
	Artifact check-list
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	AE Methodology

